a2 United States Patent
Glider et al.

US009473297B2

US 9,473,297 B2
*QOct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) ACHIEVING STORAGE EFFICIENCY IN
PRESENCE OF END-TO-END ENCRYPTION
USING DOWNSTREAM DECRYPTERS

(71) Applicant: International Business Machines

Corporation, Armonk, NY (US)

(72)

Inventors: Joseph S. Glider, Palo Alto, CA (US);

Alessandro Sorniotti, Zurich (CH)
(73) International Business Machines
Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/855,497

Filed: Sep. 16, 2015

(65) Prior Publication Data

US 2016/0006564 Al Jan. 7, 2016

Related U.S. Application Data

Continuation of application No. 13/857,505, filed on
Apr. 5, 2013, now Pat. No. 9,215,067.

(63)

Int. CL.
HO4L 9/00
HO4L 9/08
HO4L 930
HO4L 9/28
HO4K 1/00
HO4L 29/06
GO6F 11/30
GO6F 12/14
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
HO4L 9/0816 (2013.01); HO4L 9/0894
(2013.01); HO4L 9/3006 (2013.01); HO4L

2209/24 (2013.01)

212
Is
‘Awilery informaton
Needed to Decrypt
the Dats?
3]

a
YES

(Gather

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,594,869 A * 1/1997 Haweeovvevrn. HO041L 29/06
370/474
5,604,801 A * 2/1997 Dolan HO041L 9/0822
380/277
6,061,449 A 5/2000 Candelore et al.
7,792,300 B1* 9/2010 Caronni G06Q 20/3829
380/259
8,199,911 Bl 6/2012 Tsaur et al.
2001/0018741 Al 8/2001 Hogan
2002/0019935 Al* 2/2002 Andrew ... GO6F 12/1408
713/165
2009/0316899 Al* 12/2009 Kimcceoevvrneenn HO04L 9/0637
380/255
2010/0017593 Al* 1/2010 Putzooeoevvrnnn HO04L 9/3073
713/150
2010/0083003 Al 4/2010 Spackman
(Continued)
FOREIGN PATENT DOCUMENTS
JP 2011233157 11/2011

Primary Examiner — Shin-Hon Chen
(74) Attorney, Agent, or Firm — Lieberman &
Brandsdorfer, LLC

(57) ABSTRACT

Embodiments of the invention relate to efficiently storing
encrypted data in persistent storage or passing to another
data processing component. A downstream decrypter is
utilized to act within the data path between a data generator
and a storage server. The decrypter fetches an encryption
key and any other necessary auxiliary information necessary
to decrypt received data. Following decryption of the data,
the decrypter has the ability to operate directly on plaintext
and perform storage efficiency functions on the decrypted
data. The decrypter re-encrypts the data prior to the data
leaving the decrypter for persistent storage to maintain the
security of the encrypted data.

18 Claims, 6 Drawing Sheets

Commit Cipher Text to
Storage or Pass to Another
Daia Procsssing Component

Decrypt Data Using
Acquired Encryplion Key

28

Commit Deta

1o Storage as | N

NonEnciypteg
Data

US 9,473,297 B2

Page 2

(56) References Cited 2013/0145177 Al1* 6/2013 Cordella GOG6F 12/1408
713/193
U.S. PATENT DOCUMENTS 2013/0177157 Al* 7/2013 Li covvviiinienn HO04L 9/083
380/277
2010/0313040 Al 12/2010 Lumb 2013/0246813 Al* 9/2013 Mori ...ccceovvvnne. GOG6F 17/30289
2011/0314281 Al* 12/2011 Fielderc........ HO4L 9/0838] 713/193
713/168 2013/0311780 A1* 11/2013 Besehanic HO04L 9/3247
2012/0066517 Al* 3/2012 Vysogorets GO6F 21/34 713/176

713/193 2014/0143885 Al 5/2014 Blotsky et al.
2012/0137139 Al* 5/2012 Kudoh ..oooooevveeiinnn. HO4I, 9/10 2014/0161196 Al1* 6/2014 Culebro HO4N 19/40
713/189 375/240.26
2012/0204024 Al 8/2012 Augenstein et al. 2014/0164760 Al* 6/2014 Hybertson HO4N 21/4402
2013/0031636 Al 1/2013 Altschul et al. 713/153
2013/0046988 Al* 2/2013 Saldhana HO041 9/083 2014/0237255 Al* 8/2014 Martin GOGF 21/6209
713/175 713/182

2013/0121486 Al™* 5/2013 Spiescccccceennn HO04L 63/0442 . .
380/30 * cited by examiner

US 9,473,297 B2

Sheet 1 of 6

Oct. 18, 2016

U.S. Patent

B R e

At e

S, it

peemm e,
-~ "

beueyy vopdAnag _. e

{
i
|
/
5

&

Jaleuey Aoy vondiug T

HUPY JEUDHSUNY Lty

seddiceg
SR
Aowiey B Buissansid _
vy Lot Lz

e

A

i

~¥i

H
-0zl

Janag uogesddy

i
b

U.S. Patent

Oct. 18, 2016

202

Receive Cipher-Text

. the Received Data
~. Encrypted?

1 ves
Instantiate Decryption
Algorithm for Received Data

206

S Should .
~~ Decrypiers be Granted ™~
N Access to Encryption

o Key? s

1 YES
N 212

Sheet 2 of 6

US 9,473,297 B2

v 210

> Storage or Pass to Another
Data Processing Component

Commit Cipher Texito

e s\ £218
" Auxiliary Information ™\ NO Decrypt Data Using
_ Needed to Decrypt 7~ 2 Acquired Encryption Key
. theData? .~
e) 218
YES Y
¥ 914 Apply Data Function to
Gather the Auxiliary informationy” Non-Encrypted Data

226

Commit Data
to Storage as |
Non-Encrypted |

Data

R ™ “
. a8 .
~~ Received Data

224~
Re-Encrypt Data

Encrypted 7

7 Apply K
<_Additional Data 2
~Function?,~

Y YES

FIG. 2

U.S. Patent Oct. 18, 2016 Sheet 3 of 6 US 9,473,297 B2

ot
L]
L]

Decrypter Receives
instructions o Remove Rey |~ 302
from the Decrypier Key
Cache & Key Manager

Boes
the Decrypter
have the Key?

CYES

Decrypler Removes Key |~ 308
from internal Memory

FIG. 3

US 9,473,297 B2

Sheet 4 of 6

Oct. 18, 2016

U.S. Patent

¥ old
(slsomneg |
puemy | 444
74N :
181BODY HIOMISK (s)aoepaul | Aeidsi
X Ol .
) / /
7 ~ A A
E L .] v 8
ZAAN
, _ N
-0y 1 BYIED Bu185800.4
“gly
Y
0gy
gAY
Bhagiuasis sindwon
0y

US 9,473,297 B2

Sheet 5 of 6

Oct. 18, 2016

U.S. Patent

US 9,473,297 B2

Sheet 6 of 6

Oct. 18, 2016

U.S. Patent

9Ol

SIEAHNG
.\\ Q.M.LR%QU - ..w\.ﬁ__am
JBARG T 1 SIBAIBE

nectdoly

2SI
OB

\ \\ Y]
- £

sucnEoiddy DHORIBN
{ENLRA [ETLIA
| (=
(.!nlf.\\\,

. UDBEZHENLE
afeioig [UBAST sUifuy HEZIETHIA

EITHIA

Buioud pug \\\m i
e \\\ BOHNS

wewsieugy \ jussfaLepy \\ R
H‘ IBhieR A “ AT BOIAIBYG \\\“ {210 1880

waleuap
sioAnain
pug
SLdyEA]

BIZAI0S \\\

US 9,473,297 B2

1
ACHIEVING STORAGE EFFICIENCY IN
PRESENCE OF END-TO-END ENCRYPTION
USING DOWNSTREAM DECRYPTERS

CROSS REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation patent application
claiming the benefit of the filing date of U.S. patent appli-
cation Ser. No. 13/857,505 filed on Apr. 5, 2013 and titled
“Achieving Storage Efficiency In Presence of End-To-End
Encryption Using Downstream Decrypters” now pending,
which is hereby incorporated by reference.

BACKGROUND

The present invention relates to data storage. More spe-
cifically, the invention relates to utilizing a decrypter, down-
stream in the data path from the place where data was
encrypted, for securely and efficiently storing encrypted data
blocks.

End-to-end encryption is the process of encrypting data
close to the source before committing it to storage. This
encryption process has become increasingly prevalent due to
security concerns regarding third party storage or cloud
providers, domain-specific regulations mandating the
encryption of sensitive data, ensuring secure deletion of
data, and its requirement in high-security data centers.

Encrypting data is limiting however, in that the majority
of storage efficiency functions do not achieve their intended
functions when operating on encrypted data. Encrypted data
maximizes the entropy of ciphertext, and as a consequence,
cannot be compressed. Furthermore, encryption of data
blocks in two different files or two different locations result
in different ciphertexts, resulting in the failure of standard
deduplication attempts.

BRIEF SUMMARY

This invention comprises a method, system, and computer
program product for effectively performing data functions
on encrypted data.

A method, computer program product, and system are
provided for efficiently storing encrypted data. A decrypter
receives at least one data block having ciphertext. A decryp-
tion algorithm is instantiated for the received data block of
ciphertext. The instantiation includes determining an
encryption algorithm used to encrypt the received cipher-
text, and obtaining a key associated with the encryption
algorithm. The ciphertext is decrypted to a non-encrypted
form by employing the associated encryption key. The
non-encrypted data is transformed, which includes perform-
ing one or more data functions on the non-encrypted data.
The transformed data is re-encrypted with the key.

Other features and advantages of this invention will
become apparent from the following detailed description of
the presently preferred embodiment of the invention, taken
in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The drawings referenced herein form a part of the speci-
fication. Features shown in the drawings are meant as
illustrative of only some embodiments of the invention, and
not of all embodiments of the invention unless otherwise
explicitly indicated.

15

25

40

45

55

60

2

FIG. 1 depicts a block diagram illustrating tools embed-
ded in a computer system to support a technique employed
for efficient storage of encrypted data.

FIG. 2 is a flow chart illustrating a method for efficient
storage of encrypted data.

FIG. 3 is a flow chart illustrating a method for encryption
key deletion.

FIG. 4 depicts a computing node according to an embodi-
ment of the present invention.

FIG. 5 depicts a computing environment according to an
embodiment of the present invention.

FIG. 6 depicts abstraction model layers according to an
embodiment of the present invention.

DETAILED DESCRIPTION

It will be readily understood that the components of the
present invention, as generally described and illustrated in
the Figures herein, may be arranged and designed in a wide
variety of different configurations. Thus, the following
detailed description of the embodiments of the apparatus,
system, and method of the present invention, as presented in
the Figures, is not intended to limit the scope of the
invention, as claimed, but is merely representative of
selected embodiments of the invention.

Reference throughout this specification to “a select
embodiment,” “one embodiment,” or “an embodiment”
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in
at least one embodiment of the present invention. Thus,
appearances of the phrases “a select embodiment,” “in one
embodiment,” or “in an embodiment” in various places
throughout this specification are not necessarily referring to
the same embodiment.

The illustrated embodiments of the invention will be best
understood by reference to the drawings, wherein like parts
are designated by like numerals throughout. The following
description is intended only by way of example, and simply
illustrates certain selected embodiments of devices, systems,
and processes that are consistent with the invention as
claimed herein.

A decrypter, as described hereafter, is a component part of
a data path between an application generating and/or using
data and a persistent medium where generated and/or used
data is stored. In one embodiment, the decrypter is a
compute node. The decrypter, when granted permission, has
access to encryption keys and metadata containing sufficient
information pertaining to the ciphertext to allow for decryp-
tion. Furthermore, the decrypter has the ability to obtain any
decryption key(s) required to decrypt the original plaintext,
e.g. non-encrypted, version of the data block(s). Once the
original plaintext is available, the decrypter may operate on
the plaintext directly, and can perform required storage
efficiency functions or other functions which require the data
to be in an unencrypted form. In one embodiment, the
decrypter does not require any modification to an encryption
algorithm. In another embodiment, the decrypter neither
imposes constraints on its placement in the data path, e.g. it
does not need to be placed upstream with respect to the
location of the encryption function, nor does it require
relocation of the component performing encryption. Accord-
ingly, in one embodiment, the decrypter is a secure compo-
nent or module in which data is prepared for storage in a
persistent device, e.g. back end storage, or passed to another
data processing component.

A plurality of security measures may be implemented to
ensure that the environment of the decrypter is trustworthy.

US 9,473,297 B2

3

In one embodiment, the decrypter may be operated as a
secure/trusted application e.g. packaged as a secure appli-
cation in a trusted computing environment. In another
embodiment, the decrypter has the ability to leverage a
hardware method e.g. a trusted platform module, to establish
a root of trust. In one embodiment, the decrypter is granted
the ability to manage and/or control encryption keys and
other information used to decrypt data, or can be refused
access to and/or control of encryption keys in the event that
the key owner does not authorize the decrypter to access the
data encrypted with that key. In one embodiment, the
decrypter can be implemented to only cache encryption keys
in secure volatile memory, TPM or other Hardware Security
Module (HSM). In this embodiment, the decrypter may
expose an interface through which the client may require
secure erasure of keys in the cache, TPM or HSM. Accord-
ingly, the decrypter is characterized as a package applica-
tion, or compute node that has the functionality to revoke
decryption abilities that had been previously granted.

FIG. 1 is a block diagram (100) illustrating tools embed-
ded in a computer system to support a technique employed
for efficiently storing encrypted data. There are three pri-
mary components shown herein, including an application
server (110), a key server (130), and a storage server (150).
In one embodiment, a shared pool of configurable computer
resources may be employed in place of the storage server
(150), wherein the shared pool is located in at least one data
center.

The application server (110) is provided with a processing
unit (112) in communication with memory (114) across a
bus (116). The application server (110) is shown with two
virtual machines (120) and (122). Although only two virtual
machines are shown, the invention should not be limited to
these quantities, as these quantities are merely for illustrative
purposes. The quantity of the virtual machines in commu-
nication with the application server (110) may be increased
or decreased. Data storage (126) is provided in local com-
munication to the application server (110), to store data
generated by the application server (110). Accordingly, the
application server (110) generates data to be stored, either
locally on local data storage (126), or remotely by the
storage server (150) or an alternate storage device.

As shown, a key server (130) is provided in communi-
cation with the application server (110). The key server
(130) is provided with a processing unit (132) in commu-
nication with memory (134) across a bus (136). One or more
encryption keys (140), hereinafter referred to as a key, are
stored local to the key server (130) and are employed to
encrypt and decrypt data. For illustrative purposes, only one
key (140) is shown, although in one embodiment, a plurality
of keys may be stored local to the key server (130). As
shown, the key (140) is stored local to memory (134). In
addition, in the illustrated embodiment, a key-release engine
(142) is provided local to the key server (130). In one
embodiment, the key-release engine (142) grants the key
(140), and the granted key is used to decrypt encrypted data.
Accordingly, the key-release engine (142) manages release
of one or more keys (140) for decryption of data.

The storage server (150) is in communication with the key
server (130). As shown, the storage server (150) has a
processing unit (152), in communication with memory (154)
across a bus (156). In the illustrated embodiment, the storage
server (150) is in communication with data storage (160),
which is shown herein with a plurality of data storage
modules (162), (164), and (166). While three modules are
shown respectively, any number of data storage modules
may be implemented. The storage server (150) is further

10

15

20

25

30

35

40

45

50

55

60

65

4

provided with a decrypter (170) in communication with
memory (154). The decrypter (170) includes a functional
unit (180) having one or more tools to support data decryp-
tion, performing data functions, and re-encrypting encrypted
data. The tools embedded in the functional unit (180)
include, but are not limited to, an encryption key manager
(182), a decryption manager (184), a data-function manager
(186), and an encryption manager (188).

Upon receipt of at least one encrypted data block or file
of ciphertext from the application server (110), the decryp-
tion manager (184) instantiates a decryption algorithm for
the received data block or file, hereinafter referred to as data.
The encryption key manager (182) fetches the encryption
key from the key server (130). From metadata or other
information accompanying the received data block(s), the
decryption manager (184) further determines the appropriate
tweak, seed, salt, or Initialization Vector, needed to decrypt
the received data block(s). Accordingly, the decryption
manager (184) gathers and determines the tools necessary to
decrypt the received data.

The decryption manager (184) is in communication with
the encryption key manager (182). The decryption manager
(184), using the key provided by the encryption key manager
(182), functions to decrypt the received data of ciphertext to
one or more non-encrypted data block(s) or file(s). The data
function manager (186) functions to perform one or more
data functions on the decrypted data. The data functions may
include, but are not limited to, reduction of the data, com-
pression of the data, de-duplication of the data, applying an
anti-virus scan to the data, and/or applying an indexing scan
to the data. These data functions are not viable to be
performed on encrypted data, and therefore, in one embodi-
ment, application is limited to the decrypted data in the
secure location of the decrypter (170). The re-encryption
manager (188) is provided in communication with the data
function manager (186). Once all data functions are per-
formed, the re-encryption manager (188) using the encryp-
tion key (140), functions to re-encrypt the decrypted data
block(s). In one embodiment, the received data block(s)
does not leave the decrypter (170) prior to re-encryption.
Accordingly, data is decrypted, manipulated, and re-en-
crypted all within the trusted data decrypter.

As identified above, the encryption key manager (182),
decryption manager (184), data function manager (186), and
re-encryption manager (188), are shown residing in the
functional unit (180) of the trusted decryption manager
(170) local to the storage server (150). Although in one
embodiment, the functional unit (180) and managers (182)-
(188) may reside as hardware tools external to the memory
(154) of the storage server (150). In another embodiment,
the managers (182)-(188) may be implemented as a combi-
nation of hardware and software in the shared pool of
resources. Similarly, in one embodiment, the managers
(182)-(188) may be combined into a single functional item
that incorporates the functionality of the separate items. As
shown herein, each of the manager(s) (182)-(188) are shown
local to one storage server (150). However, in one embodi-
ment they may be collectively or individually distributed
across a shared pool of configurable computer resources and
function as a unit to support decryption, data manipulation,
and re-encryption. Accordingly, the managers may be imple-
mented as software tools, hardware tools, or a combination
of software and hardware tools.

Furthermore, the described features, structures, or char-
acteristics may be combined in any suitable manner in one
or more embodiments. Examples of managers have been
provided to lend a thorough understanding of embodiments

US 9,473,297 B2

5

of the invention. One skilled in the relevant art will recog-
nize, however, that the invention can be practiced without
one or more of the specific details, or with other methods,
components, materials, etc. In other instances, well-known
structures, materials, or operations are not shown or
described in detail to avoid obscuring aspects of the inven-
tion.

The functional unit(s) described above in FIG. 1 has been
labeled with managers. A manager may be implemented in
programmable hardware devices such as field program-
mable gate arrays, programmable array logic, programmable
logic devices, or the like. The manager(s) may also be
implemented in software for processing by various types of
processors. An identified manager of executable code may,
for instance, comprise one or more physical or logical blocks
of computer instructions which may, for instance, be orga-
nized as an object, procedure, function, or other construct.
Nevertheless, the executable of an identified manager need
not be physically located together, but may comprise dis-
parate instructions stored in different locations which, when
joined logically together, comprise the managers and
achieve the stated purpose of the managers.

Indeed, a manager of executable code could be a single
instruction, or many instructions, and may even be distrib-
uted over several different code segments, among different
applications, and across several memory devices. Similarly,
operational data may be identified and illustrated herein
within the manager, and may be embodied in any suitable
form and organized within any suitable type of data struc-
ture. The operational data may be collected as a single data
set, or may be distributed over different locations including
over different storage devices, and may exist, at least par-
tially, as electronic signals on a system or network.

FIG. 2 is a flow chart (200) illustrating a method for
efficiently storing encrypted data using a decrypter. An
encrypted data block or file, referred to herein as ciphertext,
is received by a decrypter prior to storage of the ciphertext
in a persistent storage device or passed to another data
processing component (202). In one embodiment, the func-
tion of the decrypter is to process the received ciphertext in
preparation for re-encryption and commitment of the re-
encrypted data to a persistent storage device. However, in
another embodiment, the function of the decrypter may be to
pass the re-encrypted data to another data processing com-
ponent, for example for transmission of a disaster recovery
copy of the data across a wide area network (WAN).
Although the description teaches one data block, in one
embodiment the decrypter may receive a plurality of data
blocks or files. The decrypter may receive or need to gather
auxiliary information with an encrypted data block. The
provided auxiliary information is required for decryption of
ciphertext encoded with certain types of encryption algo-
rithms. Following receipt of the data block at step (202), it
is determined if the received data block is encrypted (204).
In one embodiment, the decryption process is limited to
those blocks that are encrypted. A positive response is
followed by instantiating a decryption algorithm for the
received data block (206). The instantiation at step (206)
provides the technique needed to decrypt the data. In one
embodiment, the instantiation indicates the type of encryp-
tion algorithm that was used to encrypt the data, and whether
auxiliary information is needed to decrypt the data.

Following step (206), it is determined if the decrypter
should be granted access to the encryption key (208). A
negative response to the determination at step (208) is
followed by committing the ciphertext to persistent storage
(210), or in one embodiment, passing the re-encrypted data

20

30

35

40

45

6

to another data processing component, for example for
transmission of a disaster recovery copy of the data across
a WAN. However, a positive response to the determination
at step (208) is followed by determining if auxiliary infor-
mation is needed to decrypt the data (212). In one embodi-
ment, the auxiliary information is block oriented, such as a
logical block address and volume number where the data is
stored. Similarly, in one embodiment, the auxiliary infor-
mation is file oriented, such as the inode number and offset
within the file where the data is stored. A positive response
to the determination at step (212) is following by gathering
the auxiliary information (214). However, a negative
response to the determination at step (212), or after the
process of gather the auxiliary information is completed at
step (214), is followed by decrypting the data block using
the acquired encryption key (216) and the auxiliary infor-
mation where applicable. Accordingly, encrypted ciphertext
is decrypted using the decrypter, and received ciphertext that
cannot be decrypted is committed to persistent storage or
passed to another data processing component.

Once ciphertext is decrypted by the decrypter, the non-
encrypted data block or file is prepared for persistent storage
or passed to another data processing component. Following
a negative response to the determination at step (204), e.g.
the received data block is not encrypted, or following step
(216), a data function is applied to the non-encrypted data
block (218). The application of the data function may
include, but is not limited to, compression, de-duplication,
an anti-virus scan, an indexing scan, or any other application
to the data that can only be performed on data in a non-
encrypted form. Following step (218), it is determined if an
additional function is to be performed on the non-encrypted
data (220). A positive response to the determination of step
(220) is followed by a return to step (218). However, a
negative response to the determination at step (220) indi-
cates that performance of the additional function on the
non-encrypted data is complete. The negative response to
the determination at step (220) is followed by determining if
the data received at step (202) was encrypted (222). Data
that was not original encrypted is not re-encrypted. As
shown a positive response to the determination at step (222)
results in re-encryption of the decrypted ciphertext with the
encryption key (224), e.g. the same acquired encryption key,
and a return to step (210) for commitment of the data to
storage of another data processing component. Similarly, a
negative response to the determination at step (222) is
followed by committing the processed data to storage or
another data processing component in non-encrypted form
(226). In one embodiment, any method, technique and/or
tool, used to decrypt the data, is reapplied to re-encrypt the
data. Once the data is re-encrypted, the data is committed to
persistent storage or passed to another data processing
component (210). Accordingly, received ciphertext is selec-
tively processed.

As described herein, encrypted data is encrypted with an
encryption key. In order to maintain the privacy of encrypted
data that is erased, encryption keys must be removed from
the decrypter. FIG. 3 is a flow chart (300) illustrating a
method for removing encryption keys from the key manager
or key cache in the decrypter. The encryption key is stored
with a key server, or in one embodiment with a component
that stores the key, until instructions are received to remove
the key from the key manager or cache. The decrypter
receives instructions from an entity trying to erase the key,
or a proxy, to remove the key from the key manager or cache
(302). Following receipt of instructions, it is determined if
the decrypter has the key (304). In one embodiment, the key

US 9,473,297 B2

7

may be temporarily stored. For example, in one embodi-
ment, the key may have been cached for a limited time. If at
step (304) it is determined that the decrypter does not have
the key, the process of removing the key is concluded (306).
However, if at step (304) it is determined that the decrypter
has the key, the decrypter removes the key from internal
memory, e.g. cache (308). In one embodiment, the entity
storing the key (130) and now erasing the key sends a
command to the decrypter to erase the key. In one embodi-
ment, where multiple decrypters are implemented, trusted
communications are exchanged with the decrypters to
ensure that the same key is removed from every decrypter.
In one embodiment, the key is removed through secure
deletion from the decrypter, e.g. the decrypter erases the key
on command and ensures that no copy of the key exists in
any location within the decrypter. Once the key has been
deleted from the key manager or cache in the decrypter, data
stored or held by the decrypter that was encrypted using the
erased key is considered securely erased as access to any
remaining data has been eliminated. Accordingly, the pri-
vacy of erased encrypted data is maintained through encryp-
tion key deletion.

As described and illustrated herein, the decrypter is sup-
ported by the application server and the key server as
demonstrated in the system diagram and flow charts. In one
embodiment, the functionality of the decrypter may be
extrapolated to a cloud computing environment with a
shared pool of resources.

A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes. Referring now to FIG. 4, a schematic of an example
of'a cloud computing node is shown. Cloud computing node
(410) is only one example of a suitable cloud computing
node and is not intended to suggest any limitation as to the
scope of use or functionality of embodiments of the inven-
tion described herein. Regardless, cloud computing node
(410) is capable of being implemented and/or performing
any of the functionality set forth hereinabove. In cloud
computing node (410) there is a computer system/server
(412), which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server (412) include, but
are not limited to, personal computer systems, server com-
puter systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server (412) may be described in the
general context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer systeny/server (412) may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

As shown in FIG. 4, computer system/server (412) in
cloud computing node (410) is shown in the form of a
general-purpose computing device. The components of
computer system/server (412) may include, but are not
limited to, one or more processors or processing units (416),
system memory (428), and a bus (418) that couples various
system components including system memory (428) to
processor (416). Bus (418) represents one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of
bus architectures. By way of example, and not limitation,
such architectures include an Industry Standard Architecture
(ISA) bus, a Micro Channel Architecture (MCA) bus, an
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and a Peripheral Component
Interconnects (PCI) bus. A computer system/server (412)
typically includes a variety of computer system readable
media. Such media may be any available media that is
accessible by a computer systen/server (412), and it
includes both volatile and non-volatile media, and remov-
able and non-removable media.

System memory (428) can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) (430) and/or cache memory (432).
Computer system/server (412) may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system (434) can be provided for reading from and writing
to a non-removable, non-volatile magnetic media (not
shown and typically called a “hard drive”). Although not
shown, a magnetic disk drive for reading from and writing
to a removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus (418) by one
or more data media interfaces. As will be further depicted
and described below, memory (428) may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

Program/utility (440), having a set (at least one) of
program modules (442), may be stored in memory (428) by
way of example, and not limitation, as well as an operating
system, one or more application programs, other program
modules, and program data. Each of the operating systems,
one or more application programs, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment. Program
modules (442) generally carry out the functions and/or
methodologies of embodiments of the invention as described
herein.

Computer system/server (412) may also communicate
with one or more external devices (414), such as a keyboard,
a pointing device, a display (424), etc.; one or more devices
that enable a user to interact with computer system/server
(412); and/or any devices (e.g., network card, modem, etc.)
that enable computer system/server (412) to communicate
with one or more other computing devices. Such commu-
nication can occur via Input/Output (I/0) interfaces (422).
Still yet, computer system/server (412) can communicate
with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter (420). As
depicted, network adapter (420) communicates with the
other components of computer systen/server (412) via bus

US 9,473,297 B2

9

(418). It should be understood that although not shown,
other hardware and/or software components could be used in
conjunction with computer system/server (412). Examples,
include, but are not limited to: microcode, device drivers,
redundant processing units, external disk drive arrays, RAID
systems, tape drives, and data archival storage systems, etc.

Referring now to FIG. 5, illustrative cloud computing
environment (550) is depicted. As shown, cloud computing
environment (550) comprises one or more cloud computing
nodes (510) with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone (554A), desktop com-
puter (554B), laptop computer (554C), and/or automobile
computer system (554N) may communicate. Nodes (510)
may communicate with one another. They may be grouped
(not shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment (550) to offer infra-
structure, platforms and/or software as services for which a
cloud consumer does not need to maintain resources on a
local computing device. It is understood that the types of
computing devices (554A)-(554N) shown in FIG. 5 are
intended to be illustrative only and that computing nodes
(510) and cloud computing environment (550) can commu-
nicate with any type of computerized device over any type
of network and/or network addressable connection (e.g.,
using a web browser).

Referring now to FIG. 6, a set of functional abstraction
layers provided by cloud computing environment (600) is
shown. It should be understood in advance that the compo-
nents, layers, and functions shown in FIG. 6 are intended to
be illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and cor-
responding functions are provided: hardware and software
layer (610), virtualization layer (620), management layer
(630), and workload layer (640). The hardware and software
layer (610) includes hardware and software components.
Examples of hardware components include mainframes, in
one example IBM® zSeries® systems; RISC (Reduced
Instruction Set Computer) architecture based servers, in one
example IBM pSeries® systems; IBM xSeries® systems;
IBM BladeCenter® systems; storage devices; networks and
networking components. Examples of software components
include network application server software, in one example
IBM WebSphere® application server software; and database
software, in one example IBM DB2® database software.
(IBM, zSeries, pSeries, xSeries, BladeCenter, WebSphere,
and DB2 are trademarks of International Business Machines
Corporation registered in many jurisdictions worldwide).

Virtualization layer (620) provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net-
works, including virtual private networks; virtual applica-
tions and operating systems; virtual clients; and an encryp-
tion engine.

In one example, a management layer (630) may provide
the following functions: resource provisioning, metering and
pricing, user portal, service level management, and key
server management. The functions are described below.
Resource provisioning provides dynamic procurement of
computing resources and other resources that are utilized to
perform tasks within the cloud computing environment.
Metering and pricing provides cost tracking as resources that
are utilized within the cloud computing environment, and
billing or invoicing for consumption of these resources. In
one example, these resources may comprise application

10

15

20

25

30

35

40

45

50

55

60

65

10

software licenses. Security provides identity verification for
cloud consumers and tasks, as well as protection for data and
other resources. User portal provides access to the cloud
computing environment for consumers and system admin-
istrators. Key server management provides cloud computing
key storage and lifecycle management such that required
encryption and management of associated encrypted data are
met.

Workloads layer (640) provides examples of functionality
for which the cloud computing environment may be utilized.
In the shared pool of configurable computer resources
described herein, hereinafter referred to as a cloud comput-
ing environment, files may be shared among users within
multiple data centers, also referred to herein as data sites.
Accordingly, a series of mechanisms are provided within the
shared pool to support organization and management of data
storage within the cloud computing environment.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any

US 9,473,297 B2

11

combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowcharts and block diagrams in the Figures illus-
trate the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flow-
charts or block diagrams may represent a module, segment,
or portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the {functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based

25

30

40

45

65

12

systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated. Accordingly, the
enhanced cloud computing model supports flexibility with
respect to data encryption and decryption, including, but not
limited to, processing and re-encryption of the data within a
shared pool of resources.

It will be appreciated that, although specific embodiments
of the invention have been described herein for purposes of
illustration, various modifications may be made without
departing from the spirit and scope of the invention. Accord-
ingly, the scope of protection of this invention is limited only
by the following claims and their equivalents.

We claim:

1. A method comprising:

a decrypter receiving at least one data block comprising
ciphertext, and gathering auxiliary data with the
received data block;

instantiating a decryption algorithm to decrypt the cipher-
text, wherein the instantiation comprises:
determining an encryption algorithm used to encrypt

the received ciphertext, wherein the auxiliary data is
associated with the encryption algorithm used to
encrypt the ciphertext;
obtaining a key associated with the encryption algo-
rithm; and
determining an additional input from the auxiliary data;
decrypting the received ciphertext to non-encrypted data,
including employing the key with the additional input;
transforming the non-encrypted data, including perform-
ing one or more functions to the non-encrypted data;
and

re-encrypting the transformed data, including employing
the key with the additional input.

2. The method of claim 1, further comprising the

decrypter receiving the ciphertext prior to storage.

3. The method of claim 1, further comprising limiting

decryption to encrypted data within the received data block.

US 9,473,297 B2

13

4. The method of claim 1, wherein the instantiation further
comprises selecting a tool to decrypt the received data block
based on the determined encryption method.

5. The method of claim 1, further comprising the
decrypter erasing knowledge of the key related to specific
data.

6. The method of claim 1, wherein the one or more
functions are selected from the group consisting of: data
reduction, compression, de-duplication, anti-virus scan,
indexing scan, and combinations thereof.

7. The method of claim 1, further comprising denying the
decrypter access to the key, wherein the access denial
prevents the decryption of the ciphertext.

8. The method of claim 1, further comprising restricting
access of privileged information within the decrypter to
authorized components within the decrypter, the access
restricted by a component selected from the group consisting
of: hardware and software.

9. The method of claim 1, wherein the additional input is
selected from the group consisting of: tweak, seed, salt, and
initialization vector.

10. A computer program product for storing encrypted
data, the computer program product comprising a computer
readable storage device having program code embodied
therewith, the program code executable by a hardware
processor to:

receive at least one data block comprising ciphertext, and

gather auxiliary data with the received data block;
instantiate a decryption algorithm to decrypt the cipher-
text, wherein the instantiation comprises program code
to:
determine an encryption algorithm used to encrypt the
received ciphertext, wherein the auxiliary data is
associated with the encryption algorithm used to
encrypt the ciphertext;
obtain a key associated with the encryption algorithm;
and
determine an additional input from the auxiliary data;
decrypt the received ciphertext non-encrypted data,
including program code to employ the key with the
additional input;
transform the non-encrypted data, including program
code to perform one or more functions to the non-
encrypted data; and

re-encrypt the transformed data, including program code

to employ the additional input with the key.

11. The computer program product of claim 10, further
comprising program code to select a tool to decrypt the
received data block based on the determined encryption
method.

10

15

20

25

30

35

40

45

14

12. The computer program product of claim 10, further
comprising program code to erase knowledge of the key
related to specific data.

13. The computer program product of claim 10, wherein
the one or more functions are selected from the group
consisting of: data reduction, compression, de-duplication,
anti-virus scan, indexing scan, and combinations thereof.

14. The computer program product of claim 10, further
comprising program code to deny the decrypter access to the
key, wherein the access denial prevents decryption of the
ciphertext.

15. The computer program product of claim 10, further
comprising program code to restrict access of privileged
information within the decrypter to authorized components
within the decrypter, the access restricted by a component
selected from the group consisting of: hardware and soft-
ware.

16. The method of claim 10, wherein the additional input
is selected from the group consisting of: tweak, seed, salt,
and initialization vector.

17. A system comprising:

a hardware processor operatively coupled to memory;

a decrypter, executed by the hardware processor, in com-
munication with data storage for efficient storage of
encrypted data, the decrypter to receive at least one data
block comprising ciphertext, and gather auxiliary data
with the received data block;

tools in communication with the decrypter, the tools to:
instantiate a decryption algorithm o decrypt the

received ciphertext, wherein the instantiation com-
prises the tools to
determine an encryption algorithm used to encrypt
the received ciphertext, wherein the auxiliary data
is associated with the encryption algorithm used to
encrypt the ciphertext;
obtain a key associated with the encryption algo-
rithm; and
determine an additional input from the auxiliary
data;
decrypt the ciphertext to non-encrypted data, including
the tools to employ the key with the additional input;
transform the non-encrypted data, including the tools to
perform one or more functions to the non-encrypted
data; and
re-encrypt the transformed data, including the tools to
employ the additional input with the key.

18. The system of claim 17, wherein the additional input
is selected from the group consisting of: tweak, seed, salt,
and initialization vector.

#* #* #* #* #*

